Applying a Wavelet Transform Technique to Optimize General Fitting Models for SM Analysis: A Case Study in Downscaling over the Qinghai–Tibet Plateau

Author:

Hu Zixuan,Chai LinnaORCID,Crow Wade T.,Liu Shaomin,Zhu Zhongli,Zhou JiORCID,Qu Yuquan,Liu Jin,Yang Shiqi,Lu ZhengORCID

Abstract

Soil moisture (SM) is an important land-surface parameter. Although microwave remote sensing is recognized as one of the most appropriate methods for retrieving SM, such retrievals often cannot meet the requirements of specific applications because of their coarse spatial resolution and spatiotemporal data gaps. A range of general models (GMs) for SM analysis topics (e.g., gap-filling, forecasting, and downscaling) have been introduced to address these shortcomings. This work presents a novel strategy (i.e., optimized wavelet-coupled fitting method (OWCM)) to enhance the fitting accuracy of GMs by introducing a wavelet transform (WT) technique. Four separate GMs are selected, i.e., elastic network regression, area-to-area regression kriging, random forest regression, and neural network regression. The fitting procedures are then tested within a downscaling analysis implemented between aggregated Global Land Surface Satellite products (i.e., LAI, FVC, albedo), Thermal and Reanalysis Integrating Medium-resolution Spatial-seamless LST, and Random Forest Soil Moisture (RFSM) datasets in both the WT space and the regular space. Then, eight fine-resolution SM datasets mapped from the trained GMs and OWCMs are analyzed using direct comparisons with in situ SM measurements and indirect intercomparisons between the aggregated OWCM-/GM-derived SM and RFSM. The results demonstrate that OWCM-derived SM products are generally closer to the in situ SM observations, and better capture in situ SM dynamics during the unfrozen season, compared to the corresponding GM-derived SM product, which shows fewer time changes and more stable trends. Moreover, OWCM-derived SM products represent a significant improvement over corresponding GM-derived SM products in terms of their ability to spatially and temporally match RFSM. Although spatial heterogeneity still substantially impacts the fitting accuracies of both GM and OWCM SM products, the improvements of OWCMs over GMs are significant. This improvement can likely be attributed to the fitting procedure of OWCMs implemented in the WT space, which better captures high- and low-frequency image features than in the regular space.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3