Different Responses of Solar-Induced Chlorophyll Fluorescence at the Red and Far-Red Bands and Gross Primary Productivity to Air Temperature for Winter Wheat

Author:

Chen JidaiORCID,Liu XinjieORCID,Yang Guijun,Han Shaoyu,Ma Yan,Liu LiangyunORCID

Abstract

Solar-induced chlorophyll fluorescence (SIF) is closely related to the light-reaction process and has been recognized as a good indicator for tracking gross primary productivity (GPP). Nevertheless, it has not been widely examined how SIF and GPP respond to temperature. Here, we explored the linkage mechanisms between SIF and GPP in winter wheat based on continuous measurements of canopy SIF (cSIF), GPP, and meteorological data. To separately explore the structural and physiological mechanisms underlying the SIF–GPP relationship, we studied the temperature responses of the estimated light use efficiency (LUEp), canopy-level chlorophyll fluorescence yield (cSIFyield) and photosystem-level chlorophyll fluorescence yield (ΦF) estimated using canopy-scale remote sensing measurements. We found that GPP, red canopy SIF (cSIF688) and far-red canopy SIF (cSIF760) all exhibited a decreasing trend during overwintering periods. However, GPP and cSIF688 showed relatively more obvious changes in response to air temperature (Ta) than cSIF760 did. In addition, the LUEp responded sensitively to Ta (the correlation coefficient, r = 0.83, p-value < 0.01). The cSIFyield_688 and ΦF_688 (ΦF at 688 nm) also exhibited significantly positive correlations with Ta (r > 0.7, p-value < 0.05), while cSIFyield_760 and ΦF_760 (ΦF at 760 nm) were weakly correlated with Ta (r < 0.3, p-value > 0.05) during overwintering periods. The results also show that LUEp was more sensitive to Ta than ΦF, which caused changes in the LUEp/ΦF ratio in response to Ta. By considering the influence of Ta, the GPP estimation based on the total SIF emitted at the photosystem level (tSIF) was improved (with R2 increased by more than 0.12 for tSIF760 and more than 0.05 for tSIF688). Therefore, our results indicate that the LUEp/ΦF ratio is affected by temperature conditions and highlights that the SIF–GPP model should consider the influence of temperature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3