Demand for Ecosystem Services Drive Large-Scale Shifts in Land-Use in Tropical Mountainous Watersheds Prone to Landslides

Author:

Álvarez-Vargas Francisco Javier,Castaño María Angélica Villa,Restrepo CarlaORCID

Abstract

An increasing frequency of extreme atmospheric events is challenging our basic knowledge about the resilience mechanisms that mediate the response of small mountainous watersheds (SMW) to landslides, including production of water-derived ecosystem services (WES). We hypothesized that the demand for WES increases the connectivity between lowland and upland regions, and decreases the heterogeneity of SMW. Focusing on four watersheds in the Central Andes of Colombia and combining “site-specific knowledge”, historic land cover maps (1970s and 1980s), and open, analysis-ready remotely sensed data (GLAD Landsat ARD; 1990–2000), we addressed three questions. Over roughly 120 years, the site-specific data revealed an increasing demand for diverse WES, as well as variation among the watersheds in the supply of WES. At watershed-scales, variation in the water balances—a surrogate for water-derived ES flows—exhibited complex relationships with forest cover. Fractional forest cover (pi) and forest aggregation (AIi) varied between the historic and current data sets, but in general showed non-linear relationships with elevation and slope. In the current data set (1990–2000), differences in the number of significant, linear models explaining variation in pi with time, suggest that slope may play a more important role than elevation in land cover change. We found ample evidence for a combined effect of slope and elevation on the two land cover metrics, which would be consistent with strategies directed to mitigate site-specific landslide-associated risks. Overall, our work shows strong feedbacks between lowland and upland areas, raising questions about the sustainable production of WES.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3