Herbage Mass, N Concentration, and N Uptake of Temperate Grasslands Can Adequately Be Estimated from UAV-Based Image Data Using Machine Learning

Author:

Lussem UlrikeORCID,Bolten Andreas,Kleppert Ireneusz,Jasper Jörg,Gnyp Martin LeonORCID,Schellberg Jürgen,Bareth GeorgORCID

Abstract

Precise and timely information on biomass yield and nitrogen uptake in intensively managed grasslands are essential for sustainable management decisions. Imaging sensors mounted on unmanned aerial vehicles (UAVs) along with photogrammetric structure-from-motion processing can provide timely data on crop traits rapidly and non-destructively with a high spatial resolution. The aim of this multi-temporal field study is to estimate aboveground dry matter yield (DMY), nitrogen concentration (N%) and uptake (Nup) of temperate grasslands from UAV-based image data using machine learning (ML) algorithms. The study is based on a two-year dataset from an experimental grassland trial. The experimental setup regarding climate conditions, N fertilizer treatments and slope yielded substantial variations in the dataset, covering a considerable amount of naturally occurring differences in the biomass and N status of grasslands in temperate regions with similar management strategies. Linear regression models and three ML algorithms, namely, random forest (RF), support vector machine (SVM), and partial least squares (PLS) regression were compared with and without a combination of both structural (sward height; SH) and spectral (vegetation indices and single bands) features. Prediction accuracy was quantified using a 10-fold 5-repeat cross-validation (CV) procedure. The results show a significant improvement of prediction accuracy when all structural and spectral features are combined, regardless of the algorithm. The PLS models were outperformed by their respective RF and SVM counterparts. At best, DMY was predicted with a median RMSECV of 197 kg ha−1, N% with a median RMSECV of 0.32%, and Nup with a median RMSECV of 7 kg ha−1. Furthermore, computationally less expensive models incorporating, e.g., only the single multispectral camera bands and SH metrics, or selected features based on variable importance achieved comparable results to the overall best models.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference126 articles.

1. Grasses and Grassland Ecology;Gibson,2009

2. Final Report: Grassland Areas, Production and Use. Lot 2. Methodological Studies in the Field of Agro-Environmental Indicators;Velthof,2014

3. A review of precision technologies in pasture-based dairying systems

4. The role of grasslands in food security and climate change

5. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3