Abstract
A drought risk map has been developed at the national scale by using remote-sensing satellite data over Iran by combining output layers resulting from three main components of a risk-evaluation procedure including Hazard Quantification (HQ), Vulnerability Assessment (VA) and Identification of Elements at Risk (IER) in a GIS environment. In this respect, Drought Severity (DS) was calculated by using the monthly Normalized Difference Vegetation Index (NDVI) (over 31 years from 1986–2016). Iran landcover classification and a slope map, population density maps, and irrigated farm percentages at the provincial scale were utilized within the drought risk evaluation (DRE) process. The final risk map reveals that the northwest of the country, with a climate similar to the central European weather conditions, is exposed to the maximum drought risk. In contrast, the areas with an arid climate, mainly located in the middle of Iran, exhibits minimum risk against drought. Based on the risk map, the southern part of the Caspian Sea shows very low drought risk due to the moderate and subtropical climate in this region. The outputs of this research will provide advice and warnings to help decision makers reduce drought risk consequences after prioritizing risk areas at the administrative scale.
Subject
General Earth and Planetary Sciences
Reference58 articles.
1. Drought as a Natural Hazard: Concepts and Definitions;Wilhite;Drought Glob. Assess.,2000
2. Focus on Community Resilience. World Disasters Report
http://lib.riskreductionafrica.org/handle/123456789/1067
3. Measuring economic impacts of drought: a review and discussion
4. Social Impacts of Drought: A Report to NSW Agriculture;Alston,2004
5. Social Impacts of Drought: Review of Literature,2008
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献