An Advanced Framework for Multi-Scale Forest Structural Parameter Estimations Based on UAS-LiDAR and Sentinel-2 Satellite Imagery in Forest Plantations of Northern China

Author:

Wu Xiangqian,Shen Xin,Zhang ZhengnanORCID,Cao Fuliang,She Guanghui,Cao LinORCID

Abstract

Regarded as a marked category of global forests, forest plantations not only have great significance for the development of the global economy, but also contribute ecological and social benefits. The accurate acquisition of the multi-scale (from individual tree to landscape level) and near-real-time information of structural parameters in plantations is the premise of decision-making in sustainable management for the whole forest farm, and it is also the basis for the evaluation of forest productivity in stands. The development and synergetic applications of multi-source and multi-platform remote sensing technology provide a technical basis for the highly accurate estimation of multi-scale forest structural parameters. In this study, we developed an advanced framework for estimating these parameters of forest plantations in multiple scales (individual tree, plot and landscape levels) based on the Unmanned Aircraft System Light Detection and Ranging (UAS-LiDAR) transects and wall-to-wall Sentinel-2 imagery, combined with the sample plot data in a typical forest farm plantation (mainly Larch, Chinese pine) of Northern China. The position and height of individual trees within the plots were extracted by the LiDAR-based point cloud segmentation (PCS) algorithm, and then different approaches to the extrapolation of forest structural parameters from the plot to landscape level were assessed. The results demonstrate that, firstly, the individual tree height obtained by PCS was of relatively high accuracy (rRMSE = 1.5–3.3%); secondly, the accuracy of the forest structure parameters of the sample plot scale estimated by UAS-LiDAR is rRMSE = 4.4–10.6%; and thirdly, the accuracy of the two-stage upscaling approach by UAS-LiDAR transects as an intermediate stage (rRMSE = 14.5–20.2%) performed better than the direct usage of Sentinel-2 data (rRMSE = 22.9–27.3%). This study demonstrated an advanced framework for creating datasets of multi-scale forest structural parameters in a forest plantation, and proved that the synergetic usage of UAS-LiDAR transects and full coverage medium-resolution satellite imagery can provide a high-precision and low-cost technical basis for the multi-level estimation of forest structural parameters.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3