Individual Tree Crown Segmentation Directly from UAV-Borne LiDAR Data Using the PointNet of Deep Learning

Author:

Chen Xinxin,Jiang Kang,Zhu YushiORCID,Wang Xiangjun,Yun TingORCID

Abstract

Accurate individual tree crown (ITC) segmentation from scanned point clouds is a fundamental task in forest biomass monitoring and forest ecology management. Light detection and ranging (LiDAR) as a mainstream tool for forest survey is advancing the pattern of forest data acquisition. In this study, we performed a novel deep learning framework directly processing the forest point clouds belonging to the four forest types (i.e., the nursery base, the monastery garden, the mixed forest, and the defoliated forest) to realize the ITC segmentation. The specific steps of our approach were as follows: first, a voxelization strategy was conducted to subdivide the collected point clouds with various tree species from various forest types into many voxels. These voxels containing point clouds were taken as training samples for the PointNet deep learning framework to identify the tree crowns at the voxel scale. Second, based on the initial segmentation results, we used the height-related gradient information to accurately depict the boundaries of each tree crown. Meanwhile, the retrieved tree crown breadths of individual trees were compared with field measurements to verify the effectiveness of our approach. Among the four forest types, our results revealed the best performance for the nursery base (tree crown detection rate r = 0.90; crown breadth estimation R2 > 0.94 and root mean squared error (RMSE) < 0.2m). A sound performance was also achieved for the monastery garden and mixed forest, which had complex forest structures, complicated intersections of branches and different building types, with r = 0.85, R2 > 0.88 and RMSE < 0.6 m for the monastery garden and r = 0.80, R2 > 0.85 and RMSE < 0.8 m for the mixed forest. For the fourth forest plot type with the distribution of crown defoliation across the woodland, we achieved the performance with r = 0.82, R2 > 0.79 and RMSE < 0.7 m. Our method presents a robust framework inspired by the deep learning technology and computer graphics theory that solves the ITC segmentation problem and retrieves forest parameters under various forest conditions.

Publisher

MDPI AG

Subject

Forestry

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3