Abstract
In this paper, a miniature Fabry-Perot temperature probe was designed by using polydimethylsiloxane (PDMS) to encapsulate a microfiber in one cut of hollow core fiber (HCF). The microfiber tip and a common single mode fiber (SMF) end were used as the two reflectors of the Fabry-Perot interferometer. The temperature sensing performance was experimentally demonstrated with a sensitivity of 11.86 nm/°C and an excellent linear fitting in the range of 43–50 °C. This high sensitivity depends on the large thermal-expansion coefficient of PDMS. This temperature sensor can operate no higher than 200 °C limiting by the physicochemical properties of PDMS. The low cost, fast fabrication process, compact structure and outstanding resolution of less than 10−4 °C enable it being as a promising candidate for exploring the temperature monitor or controller with ultra-high sensitivity and precision.
Funder
Fundamental Research Funds for the Central Universities
Liaoning Province Natural Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献