An Optimized Node Deployment Solution Based on a Virtual Spring Force Algorithm for Wireless Sensor Network Applications

Author:

Deng Xiaohua,Yu Zhiyong,Tang RongxinORCID,Qian Xin,Yuan Kai,Liu Shiyun

Abstract

How to effectively deploy all wireless sensors and save a system’s energy consumption is a key issue in current wireless sensor network (WSN) applications. Theoretical analysis has proven that a hexagonal structure is the best topology in the two-dimensional network, which can provide the maximum coverage area with the minimum number of sensor nodes and minimum energy consumption. Recently, many scientists presented their self-deployment strategies based on different virtual forces and discussed the corresponding efficiency via several case studies. However, according to our statistical analysis, some virtual force algorithms, e.g., virtual spring force, can still cause holes or twisted structure in a small region of the final network distribution, which cannot achieve the ideal network topology and will waste the system energy in real applications. In this paper, we first statistically analyzed the convergence and deployment effect of the virtual spring force algorithm to derive our question. Then we presented an optimized strategy that sensor deployment begins from the center of the target region by adding an external central force. At the early stage, the external force will be added to the most peripheral nodes to promote the formation of hexagonal topology and avoid covering holes or unusual structure. Finally, a series of independent simulation experiments and corresponding statistical results proved that our optimized deployment solution is very stable and effective, which can improve the energy consumption of the whole sensor network and be used in the application of a large scale WSN.

Funder

National Natural Science Foundation of China

Open Projects Funding of Lunar and Planetary Science Laboratory at MUST

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3