Analysis of Site-dependent Pinus halepensis Mill. Defoliation Caused by ‘Candidatus Phytoplasma pini’ through Shape Selection in Landsat Time Series

Author:

Trujillo-Toro Jesus,Navarro-Cerrillo Rafael M.ORCID

Abstract

High levels of ‘Candidatus Phytoplasma pini’ have produced extensive forest mortality on Pinus halepensis Mill forests in eastern Spain. This has led to the widespread levels of forest mortality. We used archival Landsat imagery and shapes algorithm implemented in the Google Earth Engine to explore the potential of the LandTrendr algorithm and its outputs, together with field observations, to analyze and predict the health status in P. halepensis stands affected by ‘Candidatus Phytoplasma pini’ in Andalusia (south-eastern Spain). We found that the Landsat time series algorithm (LandTrendr) has captured both long- and short-duration trends and changes in spectral reflectance related to phytoplasma disturbance in the Aleppo pine forest stands investigated. The normalized burn ratio (NBR) trends were positively associated with environmental variables: Annual precipitation, mean temperature, soil depth, percent base saturation and aspect. Environmental variables were tested for their contributions to the mapping of changes in Aleppo pine cover in the study area, as an empirical modeling approach to disturbance mapping in forests of south-eastern Spain. The methodology outlined in this paper has produced valuable results that indicate new possibilities for the use in forest management of remote-sensing technologies based on spectral trajectories associated with pest-diseases defoliation. Given the likely increase in pest risks in the forests of southern Europe, accurate assessment and map of pest outbreaks on forests will become increasingly important, both for research and for practical applications in forest management.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3