Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection

Author:

Stott David,Kristiansen Søren Munch,Sindbæk Søren MichaelORCID

Abstract

Across the world, cultural heritage is eradicated at an unprecedented rate by development, agriculture, and natural erosion. Remote sensing using airborne and satellite sensors is an essential tool for rapidly investigating human traces over large surfaces of our planet, but even large monumental structures may be visible as only faint indications on the surface. In this paper, we demonstrate the utility of a machine learning approach using airborne laser scanning data to address a “needle-in-a-haystack” problem, which involves the search for remnants of Viking ring fortresses throughout Denmark. First ring detection was applied using the Hough circle transformations and template matching, which detected 202,048 circular features in Denmark. This was reduced to 199 candidate sites by using their geometric properties and the application of machine learning techniques to classify the cultural and topographic context of the features. Two of these near perfectly circular features are convincing candidates for Viking Age fortresses, and two are candidates for either glacial landscape features or simple meteor craters. Ground-truthing revealed the latter sites as ice age features, while the cultural heritage sites Borgø and Trælbanke urge renewed archaeological investigation in the light of our findings. The fact that machine learning identifies compelling new candidate sites for ring fortresses demonstrates the power of the approach. Our automatic approach is applicable worldwide where digital terrain models are available to search for cultural heritage sites, geomorphological features, and meteor impact craters.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3