Working with Gaussian Random Noise for Multi-Sensor Archaeological Prospection: Fusion of Ground Penetrating Radar Depth Slices and Ground Spectral Signatures from 0.00 m to 0.60 m below Ground Surface

Author:

Agapiou ,Sarris

Abstract

The integration of different remote sensing datasets acquired from optical and radar sensors can improve the overall performance and detection rate for mapping sub-surface archaeological remains. However, data fusion remains a challenge for archaeological prospection studies, since remotely sensed sensors have different instrument principles, operating in different wavelengths. Recent studies have demonstrated that some fusion modelling can be achieved under ideal measurement conditions (e.g., simultaneously measurements in no hazy days) using advance regression models, like those of the nonlinear Bayesian Neural Networks. This paper aims to go a step further and investigate the impact of noise in regression models, between datasets obtained from ground-penetrating radar (GPR) and portable field spectroradiometers. Initially, the GPR measurements provided three depth slices of 20 cm thickness, starting from 0.00 m up to 0.60 m below the ground surface while ground spectral signatures acquired from the spectroradiometer were processed to calculate 13 multispectral and 53 hyperspectral indices. Then, various levels of Gaussian random noise ranging from 0.1 to 0.5 of a normal distribution, with mean 0 and variance 1, were added at both GPR and spectral signatures datasets. Afterward, Bayesian Neural Network regression fitting was applied between the radar (GPR) versus the optical (spectral signatures) datasets. Different regression model strategies were implemented and presented in the paper. The overall results show that fusion with a noise level of up to 0.2 of the normal distribution does not dramatically drop the regression model between the radar and optical datasets (compared to the non-noisy data). Finally, anomalies appearing as strong reflectors in the GPR measurements, continue to provide an obvious contrast even with noisy regression modelling.

Funder

Republic of Cyprus

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noise-Resistant Remote Sensing System Based on Discrete Tomography Approach and Artificial Intelligence;2023 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo);2023-11-13

2. Identification of Unstable Subsurface Rock Structure Using Ground Penetrating Radar: An EEMD-Based Processing Method;Applied Sciences;2020-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3