An Improved Generalized Chirp Scaling Algorithm Based on Lagrange Inversion Theorem for High-Resolution Low Frequency Synthetic Aperture Radar Imaging

Author:

Chen Xing,Yi Tianzhu,He Feng,He Zhihua,Dong Zhen

Abstract

The high-resolution low frequency synthetic aperture radar (SAR) has serious range-azimuth phase coupling due to the large bandwidth and long integration time. High-resolution SAR processing methods are necessary for focusing the raw data of such radar. The generalized chirp scaling algorithm (GCSA) is generally accepted as an attractive solution to focus SAR systems with low frequency, large bandwidth and wide beam bandwidth. However, as the bandwidth and/or beamwidth increase, the serious phase coupling limits the performance of the current GCSA and degrades the imaging quality. The degradation is mainly caused by two reasons: the residual high-order coupling phase and the non-negligible error introduced by the linear approximation of stationary phase point using the principle of stationary phase (POSP). According to the characteristics of a high-resolution low frequency SAR signal, this paper firstly presents a principle to determine the required order of range frequency. After compensating for the range-independent coupling phase above 3rd order, an improved GCSA based on Lagrange inversion theorem is analytically derived. The Lagrange inversion enables the high-order range-dependent coupling phase to be accurately compensated. Imaging results of P- and L-band SAR data demonstrate the excellent performance of the proposed algorithm compared to the existing GCSA. The image quality and focusing depth in range dimension are greatly improved. The improved method provides the possibility to efficiently process high-resolution low frequency SAR data with wide swath.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3