A Simulation Environment for Validation and Verification of Real Time Hyperspectral Processing Algorithms on-Board a UAV

Author:

Horstrand PabloORCID,López José Fco.,López SebastiánORCID,Leppälampi Tapio,Pusenius Markku,Rooker Martijn

Abstract

The utilization of hyperspectral imaging sensors has gained a significant relevance among many different applications due to their capability for collecting a huge amount of information across the electromagnetic spectrum. These sensors have been traditionally mounted on-board satellites and airplanes in order to extract information from the Earth’s surface. Fortunately, the progressive miniaturization of these sensors during the last lustrum has enabled their use in other remote sensing platforms, such as drones equipped with hyperspectral cameras which bring advantages in terms of higher spatial resolution of the acquired images, more flexible revisit times and lower cost of the flight campaigns. However, when these drones are autonomously flying and taking real-time critical decisions from the information contained in the captured images, it is crucial that the whole process takes place in a safe and predictable manner. In order to deal with this problem, a simulation environment is presented in this work to analyze the virtual behavior of a drone equipped with a pushbroom hyperspectral camera used for assisting harvesting applications, which enables an exhaustive and realistic validation and verification of the drone real-time hyperspectral imaging system prior to its launch. To the best of the authors’ knowledge, the proposed environment represents the only solution in the state-of-the-art that allows the virtual verification of real-time hyperspectral image processing algorithms under realistic conditions.

Funder

Electronic Components and Systems for European Leadership

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3