Accurate Geo-Referencing of Trees with No or Inaccurate Terrestrial Location Devices

Author:

Strimbu Bogdan M.ORCID,Qi Chu,Sessions John

Abstract

Accurate and precise location of trees from data acquired under-the-canopy is challenging and time-consuming. However, current forestry practices would benefit tremendously from the knowledge of tree coordinates, particularly when the information used to position them is acquired with inexpensive sensors. Therefore, the objective of our study is to geo-reference trees using point clouds created from the images acquired below canopy. We developed a procedure that uses the coordinates of the trees seen from above canopy to position the same trees seen below canopy. To geo-reference the trees from above canopy we captured images with an unmanned aerial vehicle. We reconstructed the trunk with photogrammetric point clouds built with a structure–from–motion procedure from images recorded in a circular pattern at multiple locations throughout the stand. We matched the trees segmented from below canopy with the trees extracted from above canopy using a non-rigid point-matching algorithm. To ensure accuracy, we reduced the number of matching trees by dividing the trees segmented from above using a grid with 50 m cells. Our procedure was implemented on a 7.1 ha Douglas-fir stand from Oregon USA. The proposed procedure is relatively fast, as approximately 600 trees were mapped in approximately 1 min. The procedure is sensitive to the point density, directly impacting tree location, as differences larger than 2 m between the coordinates of the tree top and the bottom part of the stem could lead to matching errors larger than 1 m. Furthermore, the larger the number of trees to be matched the higher the accuracy is, which could allow for misalignment errors larger than 2 m between the locations of the trees segmented from above and below.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Forest Mensuration;Kershaw,2017

2. Forest Growth and Yield Modeling;Weiskittel,2011

3. Using lidar for measuring individual trees in the forest: An algorithm for estimating the crown diameter;Popescu;Can. J. For. Res.,2003

4. An international comparison of individual tree detection and extraction using airborne laser scanning;Kaartinen;Remote Sens.,2012

5. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3