In-Situ Sulfuration of CoAl Metal–Organic Framework for Enhanced Supercapacitor Properties

Author:

Liao Mengchen1,Zhang Kai23,Luo Chaowei3,Wu Guozhong2ORCID,Zeng Hongyan3

Affiliation:

1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

3. College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China

Abstract

Designing efficient electrode materials is necessary for supercapacitors but remains highly challenging. Herein, cobalt sulfide with crystalline/amorphous heterophase (denoted as Co(Al)S) derived from an Al metal–organic framework was constructed by ion exchange/acid etching and subsequent sulfidation strategy. It was found that rational sulfidation by adjusting the sulfur source concentration to a suitable level was favorable to form a 3D nanosheet-interconnected network architecture with a large specific surface area, which promoted ion/electron transport and charge separation. Benefiting from the features of the unique network structure and heterophase accompanied by aluminum, nitrogen and carbon coordinated in amorphous phase, the optimal Co(Al)S(10) exhibited a high specific capacity (1791.8 C g−1 at 1 A g−1), an outstanding rate capability and an excellent cycling stability. Furthermore, the as-assembled Co(Al)S//AC device afforded an energy density of 72.3 Wh kg−1 at a power density of 750 W kg−1, verifying that the Co(Al)S was a promising material for energy storage devices. The developed scheme is expected to promote the application of MOF-derived electrode materials in electrochemical energy storage and conversion fields.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3