Preparation and Magnetic Properties of Low-Loss Soft Magnetic Composites Using MgO-Phenolic Resin Coating

Author:

Wan Lirui1,Sun Xiaoran2,Li Jiechao2,Wu Shen2ORCID

Affiliation:

1. Institute of Electromechanical Engineering and Intelligent Manufacturing, Zhengzhou Vocational College of Information Technology, Zhengzhou 450008, China

2. Institute of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

Optimizing the interface between a magnetic powder matrix and an oxide-insulating layer is an effective method to improve the permeability and lower eddy current loss of iron-based soft magnetic composites. In this study, in order to improve the bonding strength of the substrate and insulation layer, soft magnetic composites were prepared by pressing and heat treating with reduced iron powder as a magnetic matrix, high-temperature MgO nanoparticles as insulating coating, and phenolic resin as an adhesive. The effects of MgO content on the microstructure and magnetic properties of the composites were investigated. The results of a scanning electron microscopy and an energy-dispersive spectrometer analysis corroborate that the results obtained regarding the frequency characteristics and the resistivity of the iron powder agree with the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis and confirm their improvement by the presence of an insulating layer of MgO. The resistivity of the sample coated with 4 wt.% MgO is nearly 45 times higher than that of the uncoated sample under the same conditions. The MgO-insulating film formed on the surface of iron powder makes the coated sample have low effective grain size, high resistivity, and low magnetic loss at a high frequency. At 1 kHz, the magnetic loss of the 4 wt.% MgO-coated sample is reduced by 77.3%, and the magnetic loss is only 5.8% compared with the uncoated sample at 50 kHz. This magnetic loss separation study shows that the addition of MgO insulation material can effectively reduce the eddy current loss of the magnetic powder core. The 4 wt.% MgO-coated sample has the lowest hysteresis loss factor and relatively low eddy current loss factor, so it can be determined that the addition of 4 wt.% MgO is the optimum content to attain a low magnetic loss.

Funder

Henan Province science and technology project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3