Analysis of Chemical Oxygen Demand in Barrel Finishing Based on Reusing Water Resource of Grinding Fluid

Author:

Shi Huiting1,Li Xuenan23,Yang Shengqiang23,Zhao Ruihao1,Yuan Xiang1

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. Shanxi Province Key Laboratory of Precise Machining, Taiyuan 030024, China

Abstract

To explore the sustainable development of grinding fluid in barrel finishing, the idea of water resource reuse in grinding fluid has been proposed. The influence of the graphene oxide (GO) and the sodium dodecyl benzene sulfonate (SDBS) as main components in the grinding fluid on the chemical oxygen demand (COD) was analyzed. Repreparing new grinding fluids by utilizing the water resources in grinding fluid after finishing will not cause a sharp increase in COD value. GO which absorbs SDBS can be taken away from grinding fluid by physical separation. It will decrease the COD value of grinding fluid. However, SDBS exists in the form of colloids in the grinding fluid and cannot be removed through physical separation, which also affects the COD value. Based on water quality indicators (the COD, pH, total hardness, metal aluminum, anionic surfactants, and total dissolved solids), the water quality index (WQI) of the reusing grinding fluid after finishing by the physical separation is significantly reduced. It indicates that reusing water resources in grinding fluid is a feasible way to reuse grinding fluid.

Funder

Fundamental Research Program of Shanxi Province

Excellent Doctor to Shanxi Research Funding Project

Taiyuan University of Science and Technology Funding

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finishing mechanism of stably rotary ring workpiece by friction driven;International Journal of Mechanical Sciences;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3