Structure Formation in Engineered Wood Using Wood Waste and Biopolyurethane

Author:

Rimkienė Aurelija1,Kairytė Agnė1ORCID,Vėjelis Sigitas1ORCID,Kremensas Arūnas1,Vaitkus Saulius1,Šeputytė-Jucikė Jurga1

Affiliation:

1. Building Materials Institute, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu str. 28, LT-08217 Vilnius, Lithuania

Abstract

This research aims to find suitable processing methods that allow the reuse of wood waste to produce wood waste-based engineered wood logs for construction that meet the strength requirements for structural timber for sawn structural softwood. Three types of wood waste were examined: wood packaging waste (W), waste from the construction and furniture industry (PLY), and door manufacturing waste (DW). The wood waste was additionally crushed and sieved, and the granulometric composition and shape of the particles were evaluated. The microstructure of the surface of the wood waste particles was also analysed. A three-component biopolyurethane adhesive was used to bind wood waste particles. An analysis of the contact zones between the particles and biopolyurethane was performed, and the adhesion efficiency of their surfaces was evaluated. Analysis was performed using tensile tests, and the formation of contact zones was analysed with a scanning electron microscope. The wood particles were chemically treated with sodium carbonate, calcium hypochlorite, and peroxide to increase the efficiency of the contact zones between the particles and the biopolyurethane adhesive. Chemical treatment made fillers up to 30% lighter and changed the tensile strength depending on the solution used. The tensile strength of engineered wood prepared from W and treated with sodium carbonate increased from 8331 to 12,702 kPa compared to untreated waste. Additionally, the compressive strength of engineered wood made of untreated and treated wood waste particles was determined to evaluate the influence of the wood particles on the strength characteristics.

Funder

Research Council of Lithuania

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3