Perovskite versus Standard Photodetectors

Author:

Rogalski Antoni1ORCID,Hu Weida2ORCID,Wang Fang2,Wang Yang2,Martyniuk Piotr1ORCID

Affiliation:

1. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland

2. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China

Abstract

Perovskites have been largely implemented into optoelectronics as they provide several advantages such as long carrier diffusion length, high absorption coefficient, high carrier mobility, shallow defect levels and finally, high crystal quality. The brisk technological development of perovskite devices is connected to their relative simplicity, high-efficiency processing and low production cost. Significant improvement has been made in the detection performance and the photodetectors’ design, especially operating in the visible (VIS) and near-infrared (NIR) regions. This paper attempts to determine the importance of those devices in the broad group of standard VIS and NIR detectors. The paper evaluates the most important parameters of perovskite detectors, including current responsivity (R), detectivity (D*) and response time (τ), compared to the standard photodiodes (PDs) available on the commercial market. The conclusions presented in this work are based on an analysis of the reported data in the vast pieces of literature. A large discrepancy is observed in the demonstrated R and D*, which may be due to two reasons: immature device technology and erroneous D* estimates. The published performance at room temperature is even higher than that reported for typical detectors. The utmost D* for perovskite detectors is three to four orders of magnitude higher than commercially available VIS PDs. Some papers report a D* close to the physical limit defined by signal fluctuations and background radiation. However, it is likely that this performance is overestimated. Finally, the paper concludes with an attempt to determine the progress of perovskite optoelectronic devices in the future.

Funder

Polish National Science Centre

National Natural Science Foundation of China

Chinese Academy of Sciences (CAS) Hundred Talents Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3