Enhanced Supercapacitor and Cycle-Life Performance: Self-Supported Nanohybrid Electrodes of Hydrothermally Grown MnO2 Nanorods on Carbon Nanotubes in Neutral Electrolyte

Author:

Bouachma Soraya123ORCID,Zheng Xiaoying1,Moreno Zuria Alonso1ORCID,Kechouane Mohamed2,Gabouze Noureddine3,Mohamedi Mohamed1

Affiliation:

1. Centre Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, QC J3X 1S2, Canada

2. Laboratory of Material Physics, Faculty of Physics, University of Science and Technology Houari Boumediene (U.S.T.H.B.), P.O. Box 32, El-Alia, Bab Ezzouar, Algiers DZ-16111, Algeria

3. Centre de Recherche en Technologie des Semi-Conducteurs Pour l’Énergétique (CRTSE), Bd Frantz Fanon, P.O. Box 140, Alger-7 Merveilles, Algiers DZ-16038, Algeria

Abstract

Efficient and sustainable energy storage remains a critical challenge in the advancement of energy technologies. This study presents the fabrication and electrochemical evaluation of a self-supporting electrode material composed of MnO2 nanorods grown directly on a carbon paper and carbon nanotube (CNT) substrate using a hydrothermal method. The resulting CNT/MnO2 electrodes exhibit a unique structural architecture with a high surface area and a three-dimensional hierarchical arrangement, contributing to a substantial electrochemical surface area. Electrochemical testing reveals remarkable performance characteristics, including a specific capacitance of up to 316.5 F/g, which is 11 times greater than that of conventional CP/MnO2 electrodes. Moreover, the CNT/MnO2 electrodes demonstrate outstanding retention capacity, exhibiting a remarkable 165% increase over 10,000 cycles. Symmetric supercapacitor devices utilizing CNT/MnO2 electrodes maintain a large voltage window of 3 V and a specific capacitance as high as 200 F/g. These results underscore the potential of free-standing CNT/MnO2 electrodes to advance the development of high-performance supercapacitors, which can be crucial for efficient and sustainable energy storage solutions in various industrial and manufacturing applications.

Funder

Natural Sciences Engineering Research Council of Canada

Centre Québécois sur les Matériaux Fonctionnels

Global Affairs Canada’s International Scholarships Program

Ministry of Higher Education and Scientific Research of Algeria’s National Exceptional Programme

Publisher

MDPI AG

Reference34 articles.

1. Conway, B.E. (1999). Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer.

2. Ultracapacitors: Why, how, and where is the technology;Burke;J. Power Sources,2000

3. Super capacitors for energy storage: Progress, applications and challenges;Yadlapalli;J. Energy Storage,2022

4. Recent advances in carbon-based supercapacitors;Miao;Mater. Adv.,2020

5. Review of carbon-based electrode materials for supercapacitor energy storage;Dubey;Ionics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3