Modified Epoxy Resin on the Burning Behavior and Mechanical Properties of Aramid Fiber Composite

Author:

Lan Xuke12,Bian Chenxi12,Yang Yunxian1234,Zhang Qi2,Huang Guangyan12

Affiliation:

1. National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China

3. Beijing Institute of Technology Zhuhai, Zhuhai 519088, China

4. Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China

Abstract

Aramid fiber/epoxy resin (AF/EP) composite has been heavily used as an impact protection material due to its excellent mechanical properties and lightweight merits. Meanwhile, it is also necessary to concern the flammability of matrix resin and the wick effect of aramid fiber, which would constitute a fire risk in harsh environments. In this work, a multifunctional flame-retardant modifier (EAD) was incorporated into the AF/EP system to improve the flame retardation. The addition of 5 wt% EAD made the AF/EP composite exhibit a high limiting oxygen index (LOI) value of 37.5%, self-extinguishment, as well as decreased total heat release and total smoke release. The results from thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) demonstrated that the treated composites maintained good thermal stability. Due to the combined action of covalent and noncovalent bonds in the matrix-rich region, the interfacial bonding improved, which endowed AF/EP composite with strengthening and toughening effects. Compared with the control sample AF/EP, the tensile strength and ballistic parameter (V50) of the sample with 5 wt% EAD increased by 17% and 10%, accompanied with ductile failure mode. Furthermore, the flame-retardant mechanism was obtained by analyzing the actions in condensed and gaseous phases. Thanks to good compatibility and interfacial adhesion, the incorporation of EAD solved the inconsistent issue between flame retardancy and mechanical properties, which further expanded the application of AF/EP composite in the protection field.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3