Optimized Design of Low-Carbon Mix Ratio for Non-Dominated Sorting Genetic Algorithm II Concrete Based on Genetic Algorithm-Improved Back Propagation

Author:

Zhang Fan12,Wen Bo13ORCID,Niu Ditao12,Li Anbang13ORCID,Guo Bingbing12

Affiliation:

1. Department of School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China

3. Key Laboratory of Structural Engineering and Seismic Education, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

In order to achieve low-carbon optimization in the intelligent mix ratio design of concrete materials, this work first constructs a concrete mix ratio database and performs a statistical characteristics analysis. Secondly, it employs a standard back propagation (BP) and a genetic algorithm-improved BP (GA-BP) to predict the concrete mix ratio. The NSGA-II algorithm is then used to optimize the mix ratio. Finally, the method’s accuracy is validated through experiments. The study’s results indicate that the statistical characteristics of the concrete mix ratio data show a wide distribution range and good representativeness. Compared to the standard BP, the fitting accuracies of each GA-BP set are improved by 4.9%, 0.3%, 16.7%, and 4.6%, respectively. According to the Fast Non-Dominated Sorting Genetic Algorithm II (NSGA-II) optimization for meeting C50 concrete strength requirements, the optimal concrete mix ratio is as follows: cement 331.3 kg/m3, sand 639.4 kg/m3, stone 1039 kg/m3, fly ash 56 kg/m3, water 153 kg/m3, and water-reducing agent 0.632 kg/m3. The 28-day compressive strength, material cost, and carbon emissions show relative errors of 2.1%, 0.6%, and 2.9%, respectively. Compared with commercial concrete of the same strength grade, costs and carbon emissions are reduced by 7.2% and 15.9%, respectively. The methodology used in this study not only significantly improves the accuracy of concrete design but also considers the carbon emissions involved in the concrete preparation process, reflecting the strength, economic, and environmental impacts of material design. Practitioners are encouraged to explore integrated low-carbon research that spans from material selection to structural optimization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3