Mechanical Characteristics of Multi-Level 3D-Printed Silicone Foams

Author:

Yang Zhirong1ORCID,Wen Jinpeng1,Zhang Guoqi1,Tang Changyu2,Deng Qingtian3,Ling Jixin1,Hu Haitao1

Affiliation:

1. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China

2. Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China

3. School of Science, Chang’an University, Xi’an 710064, China

Abstract

Three-dimensional-printed silicone rubber foams, with their designable and highly ordered pore structures, have shown exceptional potential for engineering applications, particularly in areas requiring energy absorption and cushioning. However, optimizing the mechanical properties of these foams through structural design remains a significant challenge. This study addresses this challenge by formulating the research question: How do different 3D-printed topologies and printing parameters affect the mechanical properties of silicone rubber foams, and how can we design a novel topological structure? To answer this, we explored the mechanical behavior of two common structures–simple cubic (SC) and face-centered tetragonal (FCT)–by varying printing parameters such as filament spacing, filament diameter, and layer height. Furthermore, we proposed a novel two-level 3D-printed structure, combining SC and FCT configurations to enhance performance. The results demonstrated that the two-level SC-SC structure exhibited a specific energy absorption of 8.2 to 21.0 times greater than the SC structure and 2.3 to 7.2 times greater than the FCT structure. In conclusion, this study provides new insights into the design of 3D-printed silicone rubber foams, offering a promising approach to developing advanced cushioning materials with superior energy absorption capabilities.

Funder

National Security Academic Fund with the China Academy of Engineering Physics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3