The Influence of Silica Fly Ash and Wood Bottom Ash on Cement Hydration and Durability of Concrete

Author:

Malaiškienė Jurgita1ORCID,Vaičienė Marija2ORCID

Affiliation:

1. Laboratory of Composite Materials, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania

2. Civil Engineering Faculty, Vilnius College of Technologies and Design, Antakalnio st. 54, LT-10223 Vilnius, Lithuania

Abstract

This research addresses a notable gap in understanding the synergistic effects of high carbon wood bottom ash (BA) and silica fly ash (FA) on cement hydration and concrete durability by using them as a supplementary material to reduce the amount of cement in concrete and CO2 emissions during cement production. This study analyses the synergistic effect of FA and BA on cement hydration through X-ray diffraction (XRD), thermal analysis (TG, DTG), scanning electron microscopy (SEM), density, ultrasonic pulse velocity (UPV), compressive strength, and temperature monitoring tests. In addition, it evaluates concrete properties, including compressive strength, UPV, density, water absorption kinetics, porosity parameters, predicted resistance to freezing and thawing cycles, and results of freeze–thawing resistance. The concrete raw materials were supplemented with varying percentages of BA and FA, replacing both cement and fine aggregate at levels of 0%, 2.5%, 5%, 10% and 15%. The results indicate that a 15% substitution of BA and FA delays cement hydration by approximately 5 h and results in only a 6% reduction in compressive strength, with the hardened cement paste showing a strength similar to a 15% replacement with FA. Concrete mixtures with 2.5% BA and 2.5% FA maintained the same maximum hydration temperature and duration as the reference mix. Furthermore, the combined use of both ashes provided adequate resistance to freeze–thaw cycles, with only a 4.7% reduction in compressive strength after 150 cycles. Other properties, such as density, UPV and water absorption, exhibited minimal changes with partial cement replacement by both ashes. This study highlights the potential benefits of using BA and FA together, offering a sustainable alternative that maintains concrete performance while using waste materials.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3