Characterization of the Nitrogen Removal Potential of Two Newly Isolated Acinetobacter Strains under Low Temperature

Author:

Zhong Yongjun12,Xia Haiyang23ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China

2. Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China

3. Institute of Pharmaceuticals, Taizhou University, Taizhou 318000, China

Abstract

Excess nitrogen and phosphorus in the water causes several ecological problems for nutrients. Biological nitrogen removal is an economical and efficient way to prevent excessive nitrogen in the environment. For most areas of China, temperatures are usually lower than 20 °C except during the summertime. It is necessary to discover microbes that can efficiently remove nitrogen at low temperatures. In this study, two Acinetobacter strains were isolated from a sample in a wastewater tank in Taizhou for their capabilities to remove NO3−–N and NO2−–N at 15 °C. Heterotrophic nitrification experiments showed that both strains could efficiently remove nitrogen from the culture medium. The maximum removal rates of NH4+–N were 3.15 mg/L·h and 4.74 mg/L·h for heterotrophic nitrification by the strains F and H, respectively. Strain H grew faster and removed both nitrite and nitrate more efficiently than strain F. Genome sequencing showed that strains F and H could be classified into Acinetobacter johnsonii and Acinetobacter bereziniae, respectively. NO2−–N (100 mg/L) was completely removed in 3 days by strain H. The maximum NO3−–N removal rate was 3.53 mg/L·h for strain F. When strain H was cultured in a broth with 200 mg/L NO3−–N, 97.46% of NH4+–N (200 mg/L) was removed in 5 days, and the maximum NH4+–N removal rate was 4.04 mg/L·h. Genomic sequence analysis showed that both the strains lacked genes involved in the denitrification pathway that transforms NO3− into N2. This implies that nitrate or nitrite is removed through the nitrogen assimilation pathway. Genes responsible for nitrate assimilation are clustered together with molybdopterin cofactor biosynthesis genes. Strain H contains fewer resistance genes and transfer elements. All the above data demonstrate that strain H is a promising candidate for nitrogen removal at lower temperatures. But there is still a lot to be done to systematically evaluate the potential of A. bereziniae strain H in treating wastewater at a pilot scale. These include the long-term performance, environmental tolerance, and nitrogen removal efficiency in wastewater. And the application of these Acinetobacter strains in diverse wastewater treatment settings might require careful optimization and real-time monitoring.

Funder

Natural Science Foundation of Zhejiang Province

Science and Technology Project of Taizhou City

211 Talent project of Taizhou City

Zhejiang Provincial Department of Education Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3