Short-Circuit Fault Diagnosis on the Windings of Three-Phase Induction Motors through Phasor Analysis and Fuzzy Logic

Author:

Reyes-Malanche Josue A.1ORCID,Ramirez-Velasco Efrain2ORCID,Villalobos-Pina Francisco J.2ORCID,Gadi Suresh K.3ORCID

Affiliation:

1. Departamento de Produccion y Seguridad Industrial, Universidad Tecnologica de Aguascalientes, Aguascalientes 20200, Mexico

2. Departamento de Ingeniería Electrica Electronica, TecNm/Instituto Tecnologico de Aguascalientes, Aguascalientes 20256, Mexico

3. Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Coahuila, Torreon Campus, Torreon 27276, Mexico

Abstract

An induction motor is an electric machine widely used in various industrial and commercial applications due to its efficiency and simple design. In this regard, a methodology based on the electric phasor analysis of line currents and the variations in the phase angles among these line currents is proposed. The values in degrees of the angles between every pair of line currents were introduced to a fuzzy logic algorithm based on the Mamdani model, developed using the Matlab toolbox for detection and isolation of the inter-turn short-circuit faults on the windings of an induction motor. To carry out the analysis, the induction motor was modified in its stator windings to artificially induce short-circuit faults of different magnitudes. The current signals are acquired in real time using a digital platform developed in the Delphi 7 high-level language communicating with a float point unit Digital Signal Processor (DSP) TMS320F28335 by Texas Instruments. The proposed method not only detects the short circuit faults but also isolates the faulty winding.

Publisher

MDPI AG

Reference19 articles.

1. Motor current signature analysis and its applications in induction motor fault diagnosis;Mehala;Int. J. Syst. Appl. Eng. Dev.,2007

2. Advances in Diagnostic Techniques for Induction Machines;Bellini;IEEE Trans. Ind. Electron.,2008

3. Sound based induction motor fault diagnosis using Kohonen self-organizing map;Germen;Mech. Syst. Signal Process.,2014

4. Acoustic based fault diagnosis of three-phase induction motor;Glowacz;Appl. Acoust.,2018

5. Reliable stator fault detection based on the induction motor negative sequence current compensation;Bouzid;Int. J. Electr. Power Energy Syst.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3