Review of Uncertainty Sources in Optical Current Sensors Used in Power Systems

Author:

Costa Marcelo M.1,Martinez Maria A. G.2ORCID,Costa João C. W. A.3ORCID

Affiliation:

1. Departament of Tests, Centrais Elétricas Brasileiras S.A. (Eletrobras), Belém 66115-000, Brazil

2. Department of Electronic Engineering, Federal Center for Technological Education Celso Suckow da Fonseca, Rio de Janeiro 20271-204, Brazil

3. Faculty of Electrical and Biomedical Engineering, Federal University of Pará, Belém 66075-110, Brazil

Abstract

Optical current sensors have been developed and improved over the past few decades, and they have been increasingly employed in power systems, including smart and high-voltage grids. This is due to their many advantages over conventional electromagnetic current sensors, such as reduced size and weight, greater operational safety, and electromagnetic immunity. Like any measuring instrument or system, their quality and reliability are associated with measurement uncertainty, which quantifies their precision. This measurement uncertainty depends on a series of influencing quantities, such as the wavelength of light used in the sensor, the birefringence of the optical material used in the construction of the sensor, and environmental conditions, such as temperature and vibration. This article presents a review of the main influences that affect the quality and performance of optical current sensors and how these influences can be used to estimate measurement uncertainty. The main objective is to serve as a guide or reference for the identification and evaluation of uncertainty sources in optical current sensors used in power systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3