Medium–Long-Term PV Output Forecasting Based on the Graph Attention Network with Amplitude-Aware Permutation Entropy

Author:

Shen Shuyi1,He Yingjing1,Chen Gaoxuan2ORCID,Ding Xu2,Zheng Lingwei2

Affiliation:

1. Economic Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310016, China

2. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Medium–long-term photovoltaic (PV) output forecasting is of great significance to power grid planning, power market transactions, power dispatching operations, equipment maintenance and overhaul. However, PV output fluctuates greatly due to weather changes. Furthermore, it is frequently challenging to ensure the accuracy of forecasts for medium–long-term forecasting involving a long time span. In response to the above problems, this paper proposes a medium–long-term forecasting method for PV output based on amplitude-aware permutation entropy component reconstruction and the graph attention network. Firstly, the PV output sequence data are decomposed by ensemble empirical mode decomposition (EEMD), and the decomposed intrinsic mode function (IMF) subsequences are combined and reconstructed according to the amplitude-aware permutation entropy. Secondly, the graph node feature sequence is constructed from the reconstructed subsequences, and the mutual information of the node feature sequence is calculated to obtain the graph node adjacency matrix which is applied to generate a graph sequence. Thirdly, the graph attention network is utilized to forecast the graph sequence and separate the PV output forecasting results. Finally, an actual measurement system is used to experimentally verify the proposed method, and the outcomes indicate that the proposed method, which has certain promotion value, can improve the accuracy of medium–long-term forecasting of PV output.

Funder

Science Foundation of State Grid Zhejiang Electric Power Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3