The Comprehensive Effects of Nano Additives on Biodiesel Engines—A Review

Author:

Zheng Fangyuan1ORCID,Cho Haeng Muk1

Affiliation:

1. Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Republic of Korea

Abstract

In modern society where fossil fuel prices are increasing and environmental issues are becoming more severe, biodiesel, as a new type of clean fuel, is receiving increasing attention. Biodiesel has the advantages of renewability, environmental friendliness, and good fuel properties, demonstrating broad application prospects. However, the use of biodiesel also faces some challenges, such as higher density and kinematic viscosity, lower calorific value, etc. The application of nanoparticles in biodiesel engines helps to achieve the goal of clean fuel. In terms of fuel characteristics, nanoparticles increase the calorific value, cetane value, and flash point of the fuel, improving combustion efficiency and safety, but increasing density may affect combustion. The use of nanoparticles can promote micro explosions and secondary atomization of fuel, improve combustion characteristics, and increase cylinder pressure, heat release rate, and brake thermal efficiency while reducing fuel consumption. Nanoparticles reduce HC and CO emissions, improve combustion through higher oxygen and reaction area, and reduce incomplete combustion products. On the contrary, nanoparticles also increase CO2 emissions because better combustion conditions promote oxidation reactions. For NOX emissions, some nanoparticles lower the combustion temperature to reduce emissions, while others increase emissions. Comparison shows that all nanoparticles offer varying degrees of improvement in engine performance and emissions, but the improvement provided by TiO2 nanoparticles is significantly better than that of other nanoparticles. In the future, the synergistic effect of multiple nanoparticles should be explored to further improve performance and reduce emissions, achieving effects that cannot be achieved by a single nanoparticle.

Funder

Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3