Loss Model Control for Efficiency Optimization and Advanced Sliding Mode Controllers with Chattering Attenuation for Five-Phase Induction Motor Drive

Author:

Moussa Hassen1,Krim Saber1,Kesraoui Hichem1,Mansouri Majdi2ORCID,Mimouni Mohamed Faouzi1

Affiliation:

1. Laboratory of Automatic, Electrical Systems and Environment (LASEE), National Engineering School of Monastir, University of Monastir, Monastir 5019, Tunisia

2. Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar

Abstract

This paper proposes firstly a Second Order Sliding Mode Control (SOSMC) based on a Super Twisting Algorithm (STA) (SOSMC-STA) combined with a Direct Field-Oriented Control (DFOC) strategy of a Five-Phase Induction Motor (FPIM). The SOSMC-STA is suggested for overcoming the shortcomings of the Proportional Integral Controller (PIC) and the Conventional Sliding Mode Controller (CSMC). Indeed, the main limitations of the PIC are the slower speed response, the tuning difficulty of its parameters, and the sensitivity to changes in system parameters, including variations in process dynamics, load changes, or changes in setpoint. It is also limited to linear systems. Regarding the CSMC technique, its limitation is the chattering phenomenon, characterized by the rapid switching of the control signal. This phenomenon includes high-frequency oscillations which induce wear and tear on mechanical systems, adversely affecting performance. Secondly, this paper also proposes a Loss Model Controller (LMC) for FPIM energy optimization. Thus, the suggested LMC chooses the optimal flux magnitude required by the FPIM for each applied load torque, which consequently reduces the losses and the FPIM efficiency. The performance of the optimized DFOC-SOSMC-STA based on the LMC is verified using numerical simulation under the Matlab environment. The analysis of the simulation results shows that the DFOC-SOSMC-STA guarantees a high dynamic response, chattering reduction, good precision, and robustness in case of external load or parameter disturbances. Moreover, the DFOC-SOSMC-STA, combined with the LMC, reduces losses and increases efficiency.

Funder

Qatar National Library

Qatar National Re-search Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3