A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources

Author:

Bilal Mohd1,Bokoro Pitshou N.1ORCID,Sharma Gulshan1ORCID,Pau Giovanni2ORCID

Affiliation:

1. Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa

2. Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy

Abstract

Alternative energy sources have significantly impacted the global electrical sector by providing continuous power to consumers. The deployment of renewable energy sources in order to serve the charging requirements of plug-in electric vehicles (PEV) has become a crucial area of research in emerging nations. This research work explores the techno-economic and environmental viability of on-grid charging of PEVs integrated with renewable energy sources in the Surat region of India. The system is designed to facilitate power exchange between the grid network and various energy system components. The chosen location has contrasting wind and solar potential, ensuring diverse renewable energy prospects. PEV charging hours vary depending on the location. A novel metaheuristic-based optimization algorithm, the Pufferfish Optimization Algorithm (POA), was employed to optimize system component sizing by minimizing the system objectives including Cost of Energy (COE) and the total net present cost (TNPC), ensuring a lack of power supply probability (LPSP) within a permissible range. Our findings revealed that the optimal PEV charging station configuration is a grid-tied system combining solar photovoltaic (SPV) panels and wind turbines (WT). This setup achieves a COE of USD 0.022/kWh, a TNPC of USD 222,762.80, and a life cycle emission of 16,683.74 kg CO2-equivalent per year. The system also reached a 99.5% renewable energy penetration rate, with 3902 kWh/year of electricity purchased from the grid and 741,494 kWh/year of energy sold back to the grid. This approach could reduce reliance on overburdened grids, particularly in developing nations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3