Slow-Scale Bifurcation Analysis of a Single-Phase Voltage Source Full-Bridge Inverter with an LCL Filter

Author:

Yang Fang12,Bai Weiye12,Huang Xianghui12,Wang Yuanbin12ORCID,Liu Jiang12,Kang Zhen3

Affiliation:

1. College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. Xi’an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi’an 710054, China

3. Department of Electrical Technology, Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 710054, China

Abstract

In high-power photovoltaic systems, the inverter with an LCL filter is widely used to reduce the value of output inductance at which a lower switching frequency is required. However, the effect on the stability of the system caused by an LCL filter due to its resonance characteristic cannot be ignored. This paper studies the stability of a single-phase voltage source full-bridge inverter with an LCL filter through the bifurcation theory as it is a nonlinear system. The simulation results show that low-frequency oscillation appears when the proportional coefficient of the system controller increases or the damping resistance decreases to a certain extent. The average model is derived to analyze the low-frequency oscillation; the theoretical analysis demonstrates that low-frequency oscillation is essentially a period in which doubling bifurcation occurs, which indicates the intrinsic mechanism of the instability of the full-bridge inverter with an LCL filter. Additionally, the limitation of the existing damping resistor design standards, which only considers the main circuit parameters but ignores the influence of the controller on system stability, is identified. To solve this problem, the analytical expression of the system stability boundary is provided, which can not only provide convenience for engineering design to protect the system from low-frequency oscillation but also expand the selection range of damping resistance in practice. The experiments are performed to verify the results of the simulation and theoretical analysis, demonstrating that the analysis method can facilitate the design of the inverter with an LCL filter.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3