A Comparison of Processing Schemes for Automotive MIMO SAR Imaging

Author:

Manzoni MarcoORCID,Tebaldini StefanoORCID,Monti-Guarnieri Andrea VirgilioORCID,Prati Claudio MariaORCID,Russo IvanORCID

Abstract

Synthetic Aperture Radar (SAR) imaging is starting to play an essential role in the automotive industry. Its day and night sensing capability, fine resolution, and high flexibility are key aspects making SAR a very compelling instrument in this field. This paper describes and compares three algorithms used to combine low-resolution images acquired by a Multiple-Input Multiple-Output (MIMO) automotive radar to form an SAR image of the environment. The first is the well-known Fast Factorized Back-Projection (FFBP), which focuses the image in different stages. The second one will be called 3D2D, and it is a simple 3D interpolation used to extract the SAR image from the Range-Angle-Velocity (RAV) data cube. The third will be called Quick&Dirty (Q&D), and it is a fast alternative to the 3D2D scheme that exploits the same intuition. A rigorous mathematical description of each algorithm is derived, and their limits are addressed. We then provide simulated results assessing different interpolation kernels, proving which one performs better. A rough estimation of the number of operations proves that both algorithms can be deployed using a real-time implementation. Finally, we will present some experimental results based on open road campaign data acquired using an eight-channel MIMO radar at 77 GHz, considering the case of a forward-looking geometry.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3