A Robust Star Identification Algorithm Based on a Masked Distance Map

Author:

Yuan HaoORCID,Li Dongxu,Wang Jie

Abstract

The authors of this paper propose a robust star identification algorithm for a ‘Lost-In-Space’-mode star tracker for lost-cost CubeSat missions. A two-step identification framework and an embedded validation mechanism were designed to accelerate the process. In the first step, a masked distance map is designed to provide a shortlist of stars, and the embedded fast validation process enables the direct output of validated stars before the second step. In the second step, local similarity is utilized to select a set of stars from those shortlisted, and the final validation procedure rejects all unsatisfactory stars. This algorithm can provide reliable and robust recognition even when the captured star images include severe star positioning errors, missing stars and false stars. The proposed algorithm was verified by a simulation study under various conditions. As low-cost star sensors face harsh and unknown environments during deep space CubeSat missions such as asteroid exploration, the proposed algorithm with high robustness will provide an important function.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3