Photo(electro)catalyst of Flower-Like Cobalt Oxide Co-Doped g-C3N4: Degradation of Methylene Blue under Visible Light Illumination

Author:

Li Qiuhua,Wang Qunhui

Abstract

This work reported on the solid state synthesis of the flower-like Co(OH)2/g-C3N4 nanocomposite, using a modified hydrothermal method, for the degradation of MB, an organic pollutant. These nanomaterials were characterized for structure, surface morphology and composition using XRD, SEM and XPS, respectively. The photocatalytic activities of the as-prepared materials loaded on FTO glass substrates were evaluated for their degradation of methylene blue (MB) under visible irradiation and constant voltage. The promoting effect of Fw-Co(OH)2 on g-C3N4 was investigated under the influence of introduced various Co(OH)2 amounts. The fabricated composite catalyst showed significantly improved catalytic performance compared to pristine g-C3N4. Degradation by 25% Fw-Co(OH)2/g-C3N4 can achieve about a 100% ratio within 180 min under visible light in a three-electrode system. Moreover, Fw-Co(OH)2/g-C3N4 was easily regenerated and reused, and still possessed good degradation ability. These results suggest that Fw-Co(OH)2/g-C3N4 could be promising for application as a low-cost and high-efficiency catalyst for wastewater treatment and organic pollutant degradation.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3