A Comparison of Machine Learning Tools That Model the Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete

Author:

de-Prado-Gil Jesús,Palencia CovadongaORCID,Jagadesh P.ORCID,Martínez-García RebecaORCID

Abstract

Several types of research currently use machine learning (ML) methods to estimate the mechanical characteristics of concrete. This study aimed to compare the capacities of four ML methods: eXtreme gradient boosting (XG Boost), gradient boosting (GB), Cat boosting (CB), and extra trees regressor (ETR), to predict the splitting tensile strength of 28-day-old self-compacting concrete (SCC) made from recycled aggregates (RA), using data obtained from the literature. A database of 381 samples from literature published in scientific journals was used to develop the models. The samples were randomly divided into three sets: training, validation, and test, with each having 267 (70%), 57 (15%), and 57 (15%) samples, respectively. The coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) metrics were used to evaluate the models. For the training data set, the results showed that all four models could predict the splitting tensile strength of SCC made with RA because the R2 values for each model had significance higher than 0.75. XG Boost was the model with the best performance, showing the highest R2 value of R2 = 0.8423, as well as the lowest values of RMSE (=0.0581) and MAE (=0.0443), when compared with the GB, CB, and ETR models. Therefore, XG Boost was considered the best model for predicting the splitting tensile strength of 28-day-old SCC made with RA. Sensitivity analysis revealed that the variable contributing the most to the split tensile strength of this material after 28 days was cement.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3