Study of Ce, Ca, Fe, and Mn-Doped LaCoO3 Perovskite Oxide for the Four-Way Purification of PM, NOx, CO, and HC from Diesel Engine Exhaust

Author:

Wang Yinghui,Guo Xiurong,Du Danfeng,Yang Shaochi

Abstract

Perovskite-type catalysts were widely used in the field of automobile exhaust purification due to their inherent physicochemical properties and excellent doping characteristics. A series of La1−xMxCo1−yNyO3 (M = Ce, Ca; N = Fe, Mn) perovskite-type catalyst samples were prepared by sol-gel method for the four-way purification of PM, NOx, CO, and HC emitted by diesel exhaust. The activity of catalyst samples was tested by simulation experiments and hydrogen temperature-programmed reduction (H2-TPR). Catalyst samples were characterized by means of XRD, FT-IR, SEM, BET, and XPS analysis. The results demonstrated that the perovskite-type catalyst samples with a particle pore size of 3–5 μm can be prepared by sol-gel method. When A-site of LaCoO3 perovskite-type oxide was doped by cerium ions, the catalyst samples produced small distortion. The doping of cerium ions to A-site was more conducive to the four-way purification of diesel exhaust than calcium ions. La0.8Ce0.2CoO3 perovskite-type samples showed the best purification efficiency, and the purification efficiencies of PM, NOx, CO, and HC were 90%, 85%, 94%, and 100%, respectively. When the B-site of La0.8Ce0.2CoO3 perovskite was doped with iron ions, the purification efficiency of catalyst samples for PM and NOx can be further enhanced. When the B-site of La0.8Ce0.2CoO3 perovskite was doped with manganese ions, the purification efficiency of the catalyst samples for PM can be further enhanced. It can be seen from the simulation experiments that La0.8Ce0.2Co0.7Fe0.3O3 perovskite was the best doping amount, and the purification efficiencies of PM, NOx, CO, and HC were 95%, 92%, 94%, and 100%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3