Author:
Xu Deming,Cheng Yuanyao,Yang Gengwei,Zhao Gang,Bao Siqian
Abstract
In this study, we comparatively study the microstructures and mechanical properties of prequenching—quenching and partitioning (QQ&P) and traditional Q&P samples at different annealing temperatures (intercritical annealing temperatures). When the annealing temperature is 780 °C, the ferrite and retained austenite in QQ&P samples with lath and blocky morphologies. The lath retained austenite is mainly distributed along the lath ferrite. As the annealing temperature increases, the lath ferrite recrystallizes and gradually grows into the blocky (equiaxed) shape, leading to a decrease in the lath retained austenite content. When the annealing temperature increases to 870 °C, the ferrite content decreases significantly, and the retained austenite is mainly blocky and thin film, distributed at the boundaries of prior austenite grains and between martensite laths, respectively. Different from QQ&P samples, the ferrite and retained austenite in Q&P samples are mainly blocky when the annealing temperature is 780 °C or 810 °C. When the annealing temperature is increased to 870 °C, the microstructures of the Q&P sample are basically the same as that of the QQ&P sample. The 780 °C-QQ&P sample and the 810 °C-QQ&P sample have higher total elongation and product of strength and elongations (PSEs) than their counterpart Q&P samples due to the fact that lath ferrite and retained austenite are conducive to carbon diffusion and carbon homogenization in austenite grains, thereby improving the thermal stability and volume fraction of the retained austenite. In addition, the lath structures can release local stress concentration and delay the formation of voids and microcracks. The difference of mechanical properties between QQ&P samples and Q&P samples decreases with the increase in the annealing temperature. The results show that the low annealing temperature combined with prequenching—Q&P heat treatments can significantly improve the elongation and PSE of Q&P steel.
Funder
Postdoctoral Science Foundation of China
National Key Research and Development Program of China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献