Heat Release Kinetics upon Water Vapor Sorption Using Cation-Exchanged Zeolites and Prussian Blue Analogues as Adsorbents: Application to Short-Term Low-Temperature Thermochemical Storage of Energy

Author:

Benzaria Salma,Mamontova EkaterinaORCID,Guari YannickORCID,Larionova Joulia,Long JérômeORCID,Trens PhilippeORCID,Salles FabriceORCID,Zajac JerzyORCID

Abstract

In view of potential uses in short-term thermochemical heat storage by sorption of water vapor, the capacity to release a sufficient heat amount at the appropriate rate of a Prussian blue analogue (PBA) containing hexacyanocobaltate vacancies has been compared with those of 13X type zeolites possessing Na+, Ce3+, Ce4+, or Tb3+ extra-framework compensating cations. The extended structural and surface characterization demonstrated good reproducibility of the preparation procedures performed on a 10-g scale. The adsorbents were tested under dynamic conditions of gas flow with the aid of either a gas flow calorimeter (120 mL h−1 helium flow) to measure the amount and rate of the integral heat release or a laboratory-scale test rig (15,000 to 22,800 mL h−1 nitrogen flow) to monitor the outlet temperature of nitrogen heated by adsorption. For a regeneration temperature of 353 K and a partial H2O pressure of 2.8 kPa in helium, the PBA sample yielded an integral heat ranging between 900 and 1020 kJ kg−1 with a very slow heat release lasting for even 12–14 h. The zeolite-based materials generated between 350 and 950 kJ kg−1 more rapidly (up to 6–7 h), depending on the nature and the content of compensating cations, as well as on the dehydration state achieved during regeneration. With the laboratory-scale test rig, the efficiency of heat extraction by convection was about 65% for Na-13X and only 38% for PBA, and it diminished with decreasing flow rate.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3