An Investigation into the Energy-Efficient Motion of Autonomous Wheeled Mobile Robots

Author:

Mohammadpour Mohammad,Zeghmi Lotfi,Kelouwani Sousso,Gaudreau Marc-André,Amamou AliORCID,Graba MassinissaORCID

Abstract

In recent years, the use of electric Autonomous Wheeled Mobile Robots (AWMRs) has dramatically increased in transport of the production chain. Generally, AWMRs must operate for several hours on a single battery charge. Since the energy density of the battery is limited, energy efficiency becomes a key element in improving material transportation performance during the manufacturing process. However, energy consumption is influenced by the navigation stages, because the type of motion necessary for the AWMR to perform during a mission is totally defined by these stages. Therefore, this paper analyzes methods of energy efficiency that have been studied recently for AWMR navigation stages. The selected publications are classified into planning and motion control categories in order to identify research gaps. Unlike other similar studies, this work focuses on these methods with respect to their implications for the energy consumption of AWMRs. In addition, by using an industrial Self-Guided Vehicle (SGV), we illustrate the direct influence of the motion planning stage on global energy consumption by means of several simulations and experiments. The results indicate that the reaction of the SGV in response to unforeseen obstacles can affect the amount of energy consumed. Hence, energy constraints must be considered when developing the motion planning of AWMRs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3