Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass

Author:

Castro Garcia Abraham,Cheng Shuo,Cross Jeffrey S.ORCID

Abstract

In order to reduce global greenhouse gas emissions, renewable energy technologies such as wind power and solar photovoltaic power systems have recently become more widespread. However, Japan as a nation faces high reliance on imported fossil fuels for electricity generation despite having great potential for further renewable energy development. The focus of this study examines untapped geographical locations in Japan’s northern most prefecture, Hokkaido, that possess large wind power potential. The possibility of exploiting this potential for the purpose of producing green hydrogen is explored. In particular, its integration with a year-round conversion of Kraft lignin into bio-oil from nearby paper pulp mills through a near critical water depolymerization process is examined. The proposed bio-oil and aromatic chemical production, as well as the process’ economics are calculated based upon the total available Kraft lignin in Hokkaido, including the magnitude of wind power capacity that would be required for producing the necessary hydrogen for such a large-scale process. Green hydrogen integration with other processes in Japan and in other regions is also discussed. Finally, the potential benefits and challenges are outlined from an energy policy point-of-view.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference52 articles.

1. The Legacy of Fossil Fuels

2. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe

3. Lazard ’s Levelized Cost of Energy Analysis. November 2019https://www.lazard.com/media/451086/lazards-levelized-cost-of-energy-version-130-vf.pdf

4. 100% renewable energy system in Japan: Smoothening and ancillary services

5. Decarbonizing Heavy Industry. Csis. October 2020https://www.csis.org/analysis/climate-solutions-series-decarbonizing-heavy-industry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3