Performance Improvement of a CPV System: Experimental Investigation into Passive Cooling with Phase Change Materials

Author:

Sharma ShivangiORCID,Sellami NazmiORCID,Tahir Asif A.ORCID,Mallick Tapas K.ORCID,Bhakar RohitORCID

Abstract

High temperature and overheating of photovoltaic panels lead to efficiency losses and eventual degradation. For solar PV systems, this is a significant impediment for achieving economic viability. In this study, a novel Window-Integrated Concentrated Photovoltaic (WICPV) system is proposed for window integration. This offers high (50%) transparency and is fabricated and characterised indoors at an irradiance of 1000 Wm−2. Its electrical performance is tested (a) without applied cooling (i.e., under natural ventilation) and (b) with a heat sink to accommodate passive cooling media. The results are compared to study the effects of reduction in operating temperature on system performances. The effectiveness of a sensible cooling medium (water) and two latent heat removal media, phase change materials (or PCMs, RT50 and RT28HC), is investigated. This paper reports the passive temperature regulation of this WICPV at ambient testing conditions. The results demonstrate an increase in electrical power output by (i) 17% (RT28HC), (ii) 19% (RT50), and (iii) 25 % (circulating water) compared with the naturally ventilated system. This shows that PCMs are considerably useful for thermal regulation of the WICPV. Any improvement in efficiencies will be beneficial for increasing electrical energy generation and reducing peak energy demands.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3