Abstract
Charging of electric vehicles (EVs) on a large scale can cause problems for the grid. Utilizing local flexibility resources, such as smart charging, stationary battery, vehicle-to-grid applications, and local generation can be an efficient way to contain the grid challenges and mitigate the need for grid reinforcement. Focusing on the INSPIRIA charging station located in Norway, this paper investigates the possibility of coping with imminent grid challenges by means of local flexibility. First, the potential grid challenges are estimated with the help of Monte Carlo simulations. Second, cost and performance for the various local flexibility sources are presented. Third, an analysis of the choice of battery, charging process, and battery economy are provided. Finally, the paper discusses the optimal mix of flexibility resources to efficiently mitigate grid challenges at the INSPIRIA charging station.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference28 articles.
1. The role of transport electrification in global climate change mitigation scenarios
2. Norway Is Electrichttps://www.regjeringen.no/en/topics/transport-and-communications/veg/faktaartikler-vei-og-ts/norway-is-electric/id2677481/
3. Statistics Electric Vehicle (Norsk Elbilforening. Statistik Elbil)https://elbil.no/elbilstatistikk/
4. Enabling fast charging – Infrastructure and economic considerations
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献