An Efficient Experimental Methodology for the Assessment of the Dynamic Behaviour of Resilient Elements

Author:

Reina SalvatoreORCID,Arcos RobertORCID,Clot ArnauORCID,Romeu JordiORCID

Abstract

The assessment of the dynamic behaviour of resilient elements can be performed using the indirect method as described in the standard ISO 10846-3. This paper presents a methodology for control the error on the estimation of the frequency response functions (FRF) required for the application of the indirect method when sweep sine excitation is used. Based on a simulation process, this methodology allows for the design of the sweep sine excitation parameters, i.e., the sweep rate and the force amplitude, to control three types of errors associated to the experimentally obtained FRF in the presence of background noise: a general error of the FRF in a selected frequency range, and the errors associated to the amplitude and the frequency of the FRF resonance peak. The signal processing method used can be also tested with this methodology. The methodology has been tested in the characterisation of two different resilient elements: an elastomer and a coil spring. The simulated error estimations has been found to be in good agreement with the errors found in the measured FRF. Furthermore, it is found that for large signal-to-noise ratios, both sweep rate and force amplitude significantly affect the FRF estimation error, while, for small signal-to-noise ratios, only the force amplitude can control the error efficiently. The current methodology is specially interesting for laboratory test rigs highly used for the dynamic characterisation of resilient elements which are required to operate efficiently, since it can be used for minimising test times and providing quality assurance. Moreover, the application of this methodology would be specially relevant when characterisation is done in noisy environments.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3