SWING, The Score-Weighted Improved NowcastinG Algorithm: Description and Application

Author:

Lagasio MartinaORCID,Campo Lorenzo,Milelli MassimoORCID,Mazzarella Vincenzo,Poletti Maria Laura,Silvestro Francesco,Ferraris Luca,Federico StefanoORCID,Puca Silvia,Parodi AntonioORCID

Abstract

Because of the ongoing climate change, the frequency of extreme rainfall events at the global scale is expected to increase, resulting in higher social and economic impacts. Thus, improving the forecast accuracy and the risk communication is a fundamental goal to limit social and economic damages. Both Numerical Weather Prediction (NWP) and radar-based nowcasting systems still have open issues, mainly in terms of precipitation correct time/space localization predictability and rapid forecast accuracy decay, respectively. Trying to overcome these issues, this work aims to present a nowcasting system combining an NWP model (WRF), using a 3 h rapid update cycling 3DVAR assimilation of radar reflectivity data, with the radar-based nowcasting system PhaSt through a blending technique. Moreover, an innovative post-processing algorithm named SWING (Score-Weighted Improved NowcastinG) has been developed in order to take into account the timely and spatial uncertainty in the convective field simulation. The overarching goal is to pave the way for an easy and automatic communication of the heavy rainfall warning derived by the nowcasting procedure. The results obtained applying the SWING algorithm over a case study of 22 days in the fall 2019 season suggest that the algorithm could improve the predictive capability of a traditional deterministic nowcasting forecast system, keeping a useful forecast timing and thus integrating the current forecast procedures. Eventually, the main advantage of the SWING algorithm is also its very high versatility, since it could be used with any meteorological model also in a multi-model forecast approach.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference56 articles.

1. NowPrecip: localized precipitation nowcasting in the complex terrain of Switzerland

2. A classification of warning system for natural hazards;Sättele;Proceedings of the 10th International Probabilistic Workshop,2012

3. Warming in Europe: Recent Trends in Annual and Seasonal temperatures

4. Mediterranean extreme floods and flash floods;Gaume;Mediterr. Reg. Clim. Change,2016

5. Extreme Rainfall in the Mediterranean: What Can We Learn from Observations?

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3