How to Systematically Evaluate the Greenspace Exposure of Residential Communities? A 3-D Novel Perspective Using UAV Photogrammetry

Author:

Xia Tianyu1ORCID,Zhao Bing1,Xian Zheng1,Zhang Jinguang1ORCID

Affiliation:

1. The College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China

Abstract

The quantity and quality of green space (GS) exposure play an important role in urban residents’ physical and psychological health. However, the current framework for assessing GS quality is primarily based on 2-D remote sensing data and 2.5-D street-view images. Few studies have comprehensively evaluated residential community GSs from an overall 3-D perspective. This study proposes a novel systematic framework for evaluating the quantity and quality of residential GSs based on the generation of a high-resolution 3-D point cloud using Unmanned Aerial Vehicle (UAV)-digital aerial photogrammetry (DAP). Nine indices were proposed: green volume ratio, floor green volume index, green groups diversity index, vegetation diversity index, greenspace fragmentation, average vegetation colour distance, vegetation colour diversity, activity areas ratio, and green cohesion index of activity site. These metrics were calculated using the classified point clouds from four typical Chinese residential communities with different residential greenery types and population densities. The results showed that our method could quantitatively identify the differences in residential GS exposure within urban residential communities. For example, a residential community with a large plant distribution and rich greenery variations had higher greenspace volume ratio and vegetation diversity index values. Our findings suggest that this novel framework, employing cost-effective UAV-DAP, can clearly describe different GS attributes and characteristics, aiding decision-makers and urban planners in comprehensively implementing GS interventions to improve the residents’ quality of life.

Funder

Natural Science Foundation of Jiangsu Province

Humanity and Social Science Youth foundation of Ministry of Education of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Philosophical and Social Science Foundation of Jiangsu Universities

Priority Academic Program Development of Jiangsu Higher Educations Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3