Using High-Resolution UAV Imaging to Measure Canopy Height of Diverse Cover Crops and Predict Biomass

Author:

Kümmerer Robin1ORCID,Noack Patrick Ole2ORCID,Bauer Bernhard1

Affiliation:

1. Crop Production & Crop Protection, Institute for Biomass Research, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstrasse 16, 91746 Weidenbach, Germany

2. Information Technology and IoT in Agriculture and Environment, Competence Centre for Digital Agriculture, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstrasse 16, 91746 Weidenbach, Germany

Abstract

Remote-sensing data has become essential for site-specific farming methods. It is also a powerful tool for monitoring the agroecosystem services offered by integrating cover crops (CC) into crop rotations. This study presents a method to determine the canopy height (CH), defined as the average height of the crop stand surface, including tops and gaps, of heterogeneous and multi-species CC using commercial unmanned aerial vehicles (UAVs). Images captured with red–green–blue cameras mounted on UAVs in two missions varying in ground sample distances were used as input for generating three-dimensional point clouds using the structure-from-motion approach. These point clouds were then compared to manual ground measurements. The results showed that the agreement between the methods was closest when CC presented dense and smooth canopies. However, stands with rough canopies or gaps showed substantial differences between the UAV method and ground measurements. We conclude that the UAV method is substantially more precise and accurate in determining CH than measurements taken with a ruler since the UAV introduces additional dimensions with greatly increased resolution. CH can be a reliable indicator of biomass yield, but no differences between the investigated methods were found, probably due to allometric variations of different CC species. We propose the presented UAV method as a promising tool to include site-specific information on CC in crop production strategies.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3