Machine Learning-Based Improvement of Aerosol Optical Depth from CHIMERE Simulations Using MODIS Satellite Observations

Author:

Lemmouchi Farouk1ORCID,Cuesta Juan1ORCID,Lachatre Mathieu2,Brajard Julien3ORCID,Coman Adriana1,Beekmann Matthias4,Derognat Claude2ORCID

Affiliation:

1. Univ. Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France

2. ARIA Technologies, F-92100 Boulogne-Billancourt, France

3. Nansen Environmental and Remote Sensing Center (NERSC), N-5007 Bergen, Norway

4. Université de Paris Cité and Univ. Paris Est Creteil, CNRS, LISA, F-75013 Paris, France

Abstract

We present a supervised machine learning (ML) approach to improve the accuracy of the regional horizontal distribution of the aerosol optical depth (AOD) simulated by the CHIMERE chemistry transport model over North Africa and the Arabian Peninsula using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD satellite observations. Our method produces daily AOD maps with enhanced precision and full spatial domain coverage, which is particularly relevant for regions with a high aerosol abundance, such as the Sahara Desert, where there is a dramatic lack of ground-based measurements for validating chemistry transport simulations. We use satellite observations and some geophysical variables to train four popular regression models, namely multiple linear regression (MLR), random forests (RF), gradient boosting (XGB), and artificial neural networks (NN). We evaluate their performances against satellite and independent ground-based AOD observations. The results indicate that all models perform similarly, with RF exhibiting fewer spatial artifacts. While the regression slightly overcorrects extreme AODs, it remarkably reduces biases and absolute errors and significantly improves linear correlations with respect to the independent observations. We analyze a case study to illustrate the importance of the geophysical input variables and demonstrate the regional significance of some of them.

Funder

Region Ile-de-France in the framework of the Domaine d’Intérêt Majeur Réseau de recherche Qualité de l’air en Ile-de-France

Centre National d’Études Spatiales

Centre National de Recherche Scientifique—Institute National de Sciences de l’Univers

Université Paris Est Créteil

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3