Impacts of Shape Assumptions on Z–R Relationship and Satellite Remote Sensing Clouds Based on Model Simulations and GPM Observations

Author:

Mai Liting1,Yang Shuping1ORCID,Wang Yu1,Li Rui123ORCID

Affiliation:

1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. Deep Space Exploration Laboratory, Hefei 230026, China

3. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China

Abstract

In this study, the spherical particle model and ten nonspherical particle models describing the scattering properties of snow are evaluated for potential use in precipitation estimation from spaceborne dual-frequency precipitation radar. The single scattering properties of nonspherical snow particles are computed using discrete dipole approximation (DDA), while those of spherical particles are determined using Mie theory. The precipitation profiles from WRF output are then input to a forward radiative transfer model to simulate the radar reflectivity at Ka-band and Ku-band. The results are validated with Global Precipitation Mission Dual-Frequency Precipitation Radar measurements. Greater consistency between the simulated and observed reflectivity is obtained when using the sector- and dendrite-shape assumptions. For the case in this study, when using the spherical-shape assumption, radar underestimates the error of the cloud’s top by about 300 m and underestimates the error of the cloud’s area by about 15%. As snowflake shapes change with temperature, we use the range between −40 °C and −5 °C to define three temperature layers. The relationships between reflectivity (Z) and precipitation rate (R) are fitted separately for the three layers, resulting in Z=134.59·R1.184 (sector) and Z=127.35·R1.221 (dendrite) below −40 °C.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fengyun Satellite Application Pilot Plan

Innovation Center for Fengyun Meteorological Satellite Special Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. Earth’s global energy budget;Trenberth;Bull. Am. Meteorol. Soc.,2009

2. An update on Earth’s energy balance in light of the latest global observations;Stephens;Nat. Geosci.,2012

3. The heat balance of the earth’s surface;Budyko;Sov. Geogr.,1961

4. Rain-Profiling algorithm for the TRMM precipitation radar;Iguchi;J. Appl. Meteorol.,2000

5. Uncertainties in the rain profiling algorithm for the TRMM precipitation radar;Iguchi;J. Meteorol. Soc. Japan. Ser. II,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3